Software development and Integration in Robotics (SDIR V)

Tutorial on Component-based Robotics Software Engineering

Prof. Davide Brugali, University of Bergamo, Italy
Prof. Dr. Christian Schlegel, University of Applied Sciences Ulm, Germany
Azamat Shakhimardanov, Bonn-Rhein-Sieg University, Germany

http://robotics.unibg.it/tcsoft/sdir2010/
- SDIR - V / ICRA 2010: Tutorial

- SDIR - IV / 2009 (ICRA Kobe, Japan):
 - Robotic software and system flexibility
- SDIR - III / 2008 (ICRA Pasadena, CA):
 - Real-time robot behavior
- SDIR - II / 2007 (ICRA Rome, Italy):
 - The art of robot software development
- SDIR - I / 2005 (ICRA Barcelona, Spain):
 - Software interoperability and reuse

5 years of Software Development in Robotics
Journal of Software Engineering for Robotics

The Journal of Software Engineering for Robotics is an open-access, peer-reviewed electronic journal that aims to promote the synergy between Software Engineering and Robotics. It invites both empirical research papers that evaluate the effectiveness of existing Software Engineering approaches and methods in the development of robotic software systems, as well as theoretical contributions that present new Robotics-specific Software Engineering results.

Editor-in-Chief
Davide Brugali, Universita' degli Studi di Bergamo, Italy

Associate Editors
Herman Bruyninckx, Katholieke Universiteit Leuven, Belgium
Holger Giese, Hasso Plattner Institute at the University of Potsdam, Germany
Felix Ingold, LAAS / CNRS, France
Gerhard Kraelzschmar, Bonn-Rhein-Sieg University, Germany
Nenad Macovidic, University of Southern California, USA, United States

Editorial Board Members
Arvin Agah, University of Kansas, USA
Gabriela Arevalo, University of Bern, Switzerland
Alex Brooks, University of Sidney - Australia
Greg Broten, Defence Research and Development - Canada
Eric Colon, Royal Military Academy, Brussels, Belgium
Rüdiger Dillmann, FZI Karlsruhe, Germany
John M. Dolan, Robotics Institute CMU, USA
Antonio C. Dominguez-Brito, Universidad de Las Palmas, Spain
Mohamed A. Fayad, San José State University, USA
Juan-Antonio Fernandez Madrigal, University of Malaga, Spain
John C. Georgas, Northern Arizona University, USA
F. Gerkey, SRI AI Center, CA, USA
Andres Ibarra, Universidad Politecnica de Cartagena, Spain
Jochen Maass, TU Braunschweig, Germany
Bruce MacDonald, University of Auckland, New Zealand

Issa A.D. Nesnas, NASA / JPL, United States
Matthias Schutz, Indiana University Bloomington, United States
Christian Schlegel, Hochschule Ulm, Germany
William D. Smart, Washington University in St. Louis, United States

Vicente Matellán-Olivera, University of Leon, Spain
Giuseppe Menga, Politecnico di Torino, Italy
Maurizio Morni, Politecnico di Torino, Italy
Victor Ng-Thow-Hing, Honda Research Institute, USA
Urbano Nunes, University of Coimbra, Portugal
Cédric Pradalier, ETHZ, Switzerland
Andrei M. Rotenstein, York University, Canada
Roberto Sannino, STMicroelectronics, Italy
Oskar von Stryk, Technische Universität Darmstadt, Germany
Clemens A. Szyperski, Microsoft Research, USA
Stewart Tansley, Microsoft Research, USA
Richard N. Taylor, University of California at Irvine
Hans Utz, NASA / Ames Research Center, USA
Cezary Zielinski, Warsaw University of Technology, Poland
Sebastian Wrede, Bielefeld University, Germany
SDIR-V / ICRA 2010: Tutorial

The fifth edition of the ICRA SDIR workshop reflects an increased awareness within the Robotics community for the importance of identifying and developing software principles that support the development of new robotic systems as composition of reusable components in order to reduce development time and cost. **Component-Based Software Engineering (CBSE)** is an approach that has arisen in the software engineering community in the last decade. It aims to shift the emphasis in system-building from traditional requirement analysis, system design and implementation to **composing software systems from a mixture of reusable off-the-shelf and custom-built components**. In order to fully exploit the potential of CBSE in robotics, the subtle relationship between best practices in robotics, robotics requirements, needs of robotics and implementation technologies like e.g. middleware systems has to be made explicit. Bringing together researchers from these different disciplines through tutorial on CBSE and its principles for robotics lays the foundations towards the long-term goal of identifying the ingredients of a component model for robotics for model-driven system design.

5 years of SDIR - Software Development in Robotics
How Robotics Research Keeps...

Re-Inventing the Wheel

First, someone publishes...

...and they write code that barely works but lets them publish...

But inevitably, time runs out...

...and countless sleepless nights are spent writing code from scratch.

So, a grandiose plan is formed to write a new software API...

...and all the code used by previous lab members is a mess.

This prompts another lab to try to build on this result...

...but they can't get any details on the software used to make it work...
<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:15</td>
<td>Welcome and opening remarks</td>
<td>Christian Schlegel</td>
</tr>
<tr>
<td>09:15 - 10:45</td>
<td>Software Components and Component-based Systems</td>
<td>Luca Gherardi Davide Brugali</td>
</tr>
<tr>
<td>10:45 - 11:00</td>
<td>Coffee break</td>
<td></td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>Component-based Robotics Middleware</td>
<td>Nico Hochgeschwender Azamat Shakhimardanov</td>
</tr>
<tr>
<td>12:30 - 14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>Model-Driven Software Development in Robotics - It really works! SmartSoft MDSD Toolchain</td>
<td>Christian Schlegel Andreas Steck</td>
</tr>
<tr>
<td>15:30 - 15:45</td>
<td>Coffee break</td>
<td></td>
</tr>
<tr>
<td>15:45 - 17:00</td>
<td>Open discussion</td>
<td>All</td>
</tr>
</tbody>
</table>
Part I:
- Software Components and Component-based Systems
 - Luca Gherardi, Davide Brugali
 University of Bergamo, Italy

Part II:
- Component-based Robotics Middleware
 - Nico Hochgeschwender, Azamat Shakhimardanov
 Bonn-Rhine-Sieg University of Applied Sciences, Germany

Part III:
- Model Driven Software Development in Robotics - It really works!
 - SmartSoft MDSD Toolchain
 - Andreas Steck, Christian Schlegel
 Ulm University of Applied Sciences, Germany
Research leading to these results has received funding from:

- **Part I / Part II: BRICS**
 - European Community's Seventh Framework Programme
 FP7 (2007-2013) under grant FP7-ICT-231940-BRICS

- **Part III: ZAFH Servicerobotik**
 - http://www.zafh-servicerobotik.de/
 - Landesstiftung Baden-Württemberg
 (foundation to support projects of general public benefit linked by the common aim of securing the future capabilities of the State of Baden-Württemberg)
 - co-funded by EFRE
 (European Regional Development Fund)
<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:15</td>
<td>Welcome and opening remarks</td>
<td>Christian Schlegel</td>
</tr>
<tr>
<td>09:15 - 10:45</td>
<td>Software Components and Component-based Systems</td>
<td>Luca Gherardi, Davide Brugali</td>
</tr>
<tr>
<td>10:45 - 11:00</td>
<td>Coffee break</td>
<td></td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>Component-based Robotics Middleware</td>
<td>Nico Hochgeschwender, Azamat Shakhimardanov</td>
</tr>
<tr>
<td>12:30 - 14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>Model-Driven Software Development in Robotics - It really works! SmartSoft MDSD Toolchain</td>
<td>Christian Schlegel, Andreas Steck</td>
</tr>
<tr>
<td>15:30 - 15:45</td>
<td>Coffee break</td>
<td></td>
</tr>
<tr>
<td>15:45 - 17:00</td>
<td>Open discussion</td>
<td>All</td>
</tr>
</tbody>
</table>
Introduction Open Discussion
As we have just five minutes left, I will take only 3 million questions.
The Journal of Software Engineering for Robotics is an open-access, peer-reviewed electronic journal that aims to promote the synergy between Software Engineering and Robotics. It invites both empirical research papers that evaluate the effectiveness of existing Software Engineering approaches and methods in the development of robotic software systems, as well as theoretical contributions that present new Robotics-specific Software Engineering results.

Editor-in-Chief
Davide Brugali, Università degli Studi di Bergamo, Italy

Associate Editors
Herman Bruyninckx, Katholieke Universiteit Leuven, Belgium
Holger Giese, Hasso Plattner Institute at the University of Potsdam, Germany
Felix Ingard, LAAS / CNRS, France
Gerhard Kraetzschmar, Bonn-Rhein-Sieg University, Germany
Nenad Macdovdovic, University of Southern California, USA, United States

Issa D. Nesnas, NASA / JPL, United States
Matthias Schuetz, Indiana University Bloomington, United States
Christian Schlegel, Hochschule Ulm, Germany
William D. Smart, Washington University in St. Louis, United States

Editorial Board Members
Avin Agah, University of Kansas, USA
Gabriela Arevalo, University of Bern, Switzerland
Alex Brooks, University of Sidney - Australia
Greg Broten, Defence Research and Development - Canada
Eric Colon, Royal Military Academy, Brussels, Belgium
Rudiger Dillmann, FZI Karlsruhe, Germany
John M. Dolan, Robotics Institute CMU, USA
Antonio C. Dominguez-Brito, Universidad de Las Palmas, Spain
Mohamed E. Fayad, San José State University, USA
Juan-Antonio Fernandez Marigal, University of Malaga, Spain
John C. Georgas, Northern Arizona University, USA
Brian F. Gerkey, SRI AI Center, CA, USA
Andres Iborra, Universidad Politecnica de Cartagena, Spain
Jochen Maass, TU Braunschweig, Germany
Bruce MacDonald, University of Auckland, New Zealand

Vicente Matellan-Olivera, University of Leon, Spain
Giuseppe Menga, Politecnico di Torino, Italy
Maurizio Monso, Politecnico di Torino, Italy
Victor Ng-Thow-Hing, Honda Research Institute, USA
Urbano Nunes, University of Coimbra, Portugal
Cedric Pradalier, ETHZ, Switzerland
Andrei M. Rotenstein, York University, Canada
Roberto Sannino, STMicroelectronics, Italy
Oskar von Stryk, Technische Universität Darmstadt, Germany
Clemens A. Szyperski, Microsoft Research, USA
Stewart Tansley, Microsoft Research, USA
Richard N. Taylor, University of California at Irvine
Hans Utz, NASA / Ames Research Center, USA
Cezary Zielinski, Warsaw University of Technology, Poland
Sebastian Wrede, Bielefeld University, Germany
Final Discussion

- do we reinvent the wheel?
 - is CBSE enough?
 - what is needed within a component model?

- are there “best practices”?
 - how to provide them?
 - how to contribute?
 - how to involve others?

- what needs to be part of a robotics modeling language?
 - what is missing when reusing insights of other domains?

- what next steps to make?
 - how to collect / provide patterns / models / best practices?

- ...
Summary
We need a systematic engineering approach for robotics software!

- robots are complex systems that depend on systematic engineering
- so far fundamental properties of robotic systems have not been made detailed enough nor explicit (e.g. QoS)
- tremendous code-bases (libraries, middleware, etc.) coexist without any chance of interoperability and each tool has attributes that favors its use

→ rely, as for every engineering endeavour, on the power of models
→ nowadays, robotics functionality is foremost based on software
→ make the step towards MDSD
Conclusion of the Discussion

- we need a forum where we can talk about differences in software models, modelling techniques, etc.
- the overall aim is to collect, compare and evaluate different software modelling approaches

- **Idea:**
 provide a column in JOSER for evaluation and comparison of modelling approaches
 - regularly provide *small, but characteristic* problems in JOSER in a standard format:
 - example / description / benchmark: maximum 1 page
 - let them work out by readers in their favourite model (only very short contributions, low effort)
 - compare / discuss / benchmark the contributions by the readers

- **Result:**
 - the column can result in a collection of best practices, explicit experiences, example solutions, patterns, anti-patterns etc.
 - it should be a growing collection of implementation-independent principles in robotics

- **Action:**
 - in 2010: come up with a first problem and start this in JOSER
 - after some first examples, invite the community to propose problems