Merging Partially Consistent Maps

Taigo Maria Bonanni, Giorgio Grisetti, and Luca Iocchi

SAPIENZA
Università di Roma

SIMPAR 2014
4th International Conference on SIMULATION MODELING AND PROGRAMMING for AUTONOMOUS ROBOTS
October 20-23 – Bergamo, Italy
Outline

• Considerations about Map Learning

• Map Merging

• State of the Art & Limitations

• Our Approach

• Experiments
Map Learning – Theory

• SLAM[1][2] = estimating map of an environment and trajectory of a sensing platform

• Small environments → trivial

• Large environments → scalable up to city-sized areas

Map Learning – Practice

• Data must be acquired in single runs

• For large environments, multiple mapping sessions are needed

• Environments change … remap?

• Errors in the map … remap?
Map Learning – Considerations

• Acquiring good data is an error prone task!

• The operator must have a deep knowledge of:
 • Platform – sensors – environment – algorithms

• Difficult to obtain the \textbf{perfect} map \rightarrow several sub-optimal maps
 • Is there a way to use them?
Map Merging

• Combine existing sub-maps into a single map
State Of The Art

• Mostly done using image registration techniques [3][4]

• Main approach:
 • Extract lines from input maps
 • Find the rigid transformation that maximizes the overlap

• Intuitive and effective if maps are clean

• What if maps are affected by noise?

Limitations

- Problems to converge in presence of high errors/distortions

- Works only for 2D case
Our Approach

• Main Assumption:
 • Maps are deformable bodies

• Key Idea:
 • Take two maps, deform one on the other
 • … starting from a given initial guess
Map Representation

- A map is a deformable network consisting of
 - Nodes: robot poses/local maps
 - Edges: transforms between nearby nodes

- Edges can be seen as springs connecting nodes
Map Deformation

- Perturbing the springs, we can deform the network
- Deforming the network, we can reduce the residual noise
Deformation Algorithm

- Start from the initial guess
- Data associations among graphs [5][6]
- Insert inter-graph edges
- LSE optimization
- Iterate on neighbors

Deformation Algorithm

• Start from the initial guess
• Data associations among graphs [5][6]
• Insert inter-graph edges
• LSE optimization
• Iterate on neighbors

Grid-Map to Pose Graph

- Extract the Voronoi diagram
- Down-sample and connect neighboring points
- Synthesize observation ray-casting points to the obstacles
Raw Data Experiments

• Understand the applicability to a practical scenario
Raw Data Experiments – Voronoi

INPUT

VORONOI POSE GRAPH

REAL POSE GRAPH
Raw Data Experiments

- Our approach against single rigid transformations
- Measure the entropy of the reconstructed map

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Single Rigid Transformation</th>
<th>Graph-Based Map Merging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dis-Basement-Small</td>
<td>2039.99</td>
<td>1538.54</td>
</tr>
<tr>
<td>Dis-Basement-Big-Real</td>
<td>2144.23</td>
<td>2090.17</td>
</tr>
<tr>
<td>Dis-Basement-Big-Voronoi</td>
<td>4059.91</td>
<td>3856.92</td>
</tr>
<tr>
<td>Dis-F1-Real</td>
<td>5639.96</td>
<td>5528.97</td>
</tr>
<tr>
<td>Dis-F1-Voronoi</td>
<td>5928.52</td>
<td>5778.84</td>
</tr>
<tr>
<td>UBremen-Real</td>
<td>3436.44</td>
<td>3308.56</td>
</tr>
</tbody>
</table>
Synthetic Experiments

- Characterize the performance of the method, varying parameters

INPUT

OUTPUT RIGID TRANSFORMATION

OUR OUTPUT
Synthetic Experiments

- Compare our solution and single rigid transformations against the ground truth
- Measure the error at increasing levels of gaussian noise

<table>
<thead>
<tr>
<th>Translational error [x, y] (m)</th>
<th>Rotational error (deg)</th>
<th>Rigid Transformation ATE</th>
<th>Deformable Bodies ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.05, 0.01]</td>
<td>2</td>
<td>469.074</td>
<td>10.2425</td>
</tr>
<tr>
<td>[0.1, 0.01]</td>
<td>2</td>
<td>721.868</td>
<td>42.5413</td>
</tr>
<tr>
<td>[0.15, 0.01]</td>
<td>2</td>
<td>719.509</td>
<td>150.515</td>
</tr>
<tr>
<td>[0.2, 0.01]</td>
<td>2</td>
<td>877.672</td>
<td>243.552</td>
</tr>
<tr>
<td>[0.25, 0.01]</td>
<td>2</td>
<td>989.12</td>
<td>523.802</td>
</tr>
<tr>
<td>[0.05, 0.02]</td>
<td>2</td>
<td>402.974</td>
<td>9.49795</td>
</tr>
<tr>
<td>[0.1, 0.02]</td>
<td>2</td>
<td>682.997</td>
<td>32.4582</td>
</tr>
<tr>
<td>[0.15, 0.02]</td>
<td>2</td>
<td>893.562</td>
<td>62.5047</td>
</tr>
<tr>
<td>[0.2, 0.02]</td>
<td>2</td>
<td>1029.25</td>
<td>296.88</td>
</tr>
<tr>
<td>[0.25, 0.02]</td>
<td>2</td>
<td>1130.6</td>
<td>394.299</td>
</tr>
<tr>
<td>[0.05, 0.03]</td>
<td>2</td>
<td>336.44</td>
<td>10.4215</td>
</tr>
<tr>
<td>[0.1, 0.03]</td>
<td>2</td>
<td>593.754</td>
<td>30.4705</td>
</tr>
<tr>
<td>[0.15, 0.03]</td>
<td>2</td>
<td>825.884</td>
<td>59.5759</td>
</tr>
<tr>
<td>[0.2, 0.03]</td>
<td>2</td>
<td>1058.69</td>
<td>310.821</td>
</tr>
<tr>
<td>[0.25, 0.03]</td>
<td>2</td>
<td>1329.29</td>
<td>421.79</td>
</tr>
</tbody>
</table>

Merging Partially Consistent Maps

23/10/2014
Conclusions & Future Works

- Simple and efficient map merging approach
 - Deform inputs to reduce residual error
 - Agnostic to data association procedure

- Future Directions:
 - 3D map merging
 - Map Updating
References

